Skip to main content

SMRs - an oversold hype?


Writing in the venerable US journal Bulletin of the Atomic Scientists, Markku Lehtonen takes at look at Small Modular Reactors (SMRs), warning that they may be being oversold.  He says  ‘Despite the boost from the Ukraine crisis, it is uncertain whether SMR advocates can muster the political will and societal acceptance needed to turn SMRs into a commercial success. The economic viability of the SMR promise will crucially depend on how much further down the road towards  deglobalization, authoritarianism in its various guises, and further tweaking of the energy markets the Western societies are willing to go. Moreover, the reliance of the SMR business case on complex global supply chains as well as on massive deployment and geographical dispersion of nuclear facilities creates its own geopolitical vulnerabilities and security problems’.

A key issue for the selling of  SMRs is ease of deployment . Well it may not be as easy as some hope, although the US Nuclear Regulatory Commission has recently moved to allow ‘advanced  nuclear plants’ to be built in thickly populated areas. The NRC decision entitled ‘Population-Related Siting Considerations for Advanced Reactors,’ was passed subject to one vote against from Commissioner Jeffery Baran, who said ‘multiple, independent layers of protection against potential radiological exposure are necessary because we do not have perfect knowledge of new reactor technologies and their unique potential accident scenarios… Unlike light-water reactors, new advanced reactor designs do not have decades of operating experience; in many cases, the new designs have never been built or operated before.’  

There may be other ways for NRC to smooth the path ahead .  NIRS/WISE Nuclear Monitor 904, reports on the views of  Dr Ed Lyman, from the US Union of Concerned Scientists, who says SMRs and Advanced Modular Reactors are likely to be expensive and he lists some other possible ways to ‘cut corners on safety & security to cut costs’, that the industry would like NRC to consider. Here are some of them:  

• Allow nuclear power plants to have a ‘small containment-or no physical containment at all’. 

• No offsite emergency planning requirements. 

• Fewer or even zero operators. 

• Letting the plants have ‘fewer NRC inspections and weaker enforcement.’ 

• ‘Reduced equipment reliability reporting.’ 

• ‘Fewer back-up safety systems.’ 

• ‘Regulatory requirements should be few in number and vague.’ 

• ‘Zero’ armed security personnel to try to protect an advanced nuclear plant from terrorists.

We are almost talking about a ‘wild west’  free for all!  Hopefully some sense will prevail. And a more balanced view of possibilities, risks and benefits will be taken, in the US, and also in the UK, where there are plans for developing 20-30 PWR-type SMRs as part of the UK plan to triple UK nuclear capacity by 2050. 

Will it really happen?  There certainly are  a lot of very different ideas being mooted,  beyond just mini-versions of Pressurised Water-cooled Reactors, including sodium cooled fast neutron reactors, molten flouride salt reactors, and high temperature helium cooled reactors. But as I explored in my recent book, looking back how these ideas emerged and were then abandoned in the early days of nuclear experimentation, I’m not convinced that any of the new nuclear, variants large or small, has much of a future. Renewables are arguably a far better bet. And I’m not alone in thinking that SMRs are not the way ahead.

In case you are interested, I’m still recovering from my Carotid Endarterectomy operation in early December- evidently it takes at least 6 weeks to settle. So this is another short post. 


Comments

  1. You are doing great work, Dave . But now - be sure to look after yourself, and best wishes for a good, quick recovery.

    ReplyDelete

Post a Comment

Popular posts from this blog

Global Energy Outlooks - BP v Jacobson

The share of renewables in global primary energy may increase ‘from around 10% in 2019 to between 35-65% by 2050, driven by the improved cost competitiveness of renewables, together with the increasing prevalence of policies encouraging a shift to low-carbon energy’. So says BP in its latest Global Energy Outlook . It does see wind and solar accounting ‘for all or most of the growth in power generation’, but even at the top of the range quoted, it still falls a lot short of the renewable ‘100% of total energy’ scenarios that have been produced by some academics in recent years.  To fill the gap to zero net carbon, BP sees wide-scale use being made use of carbon capture technology, as well as some nuclear power. And it says ‘Natural declines in existing production sources mean there needs to be continuing upstream investment in oil and natural gas over the next 30 years’. You won’t find much support for these fossil and nuclear options in the scenarios produced by Stanford Universities

Small Modular reactors- a US view

Allison Macfarlane, who was Chair of the US Nuclear Regulatory Commission (NRC) from 2012-2014, has been looking at Small Modular Reactors in the USA and elsewhere. She thinks they are likely to be uneconomic, much like the their larger brethren, which, as she describes, have recently been doing very poorly in the USA.  Indeed, just like the EPR story in the EU, it makes for a sorry saga: ‘The two units under construction in South Carolina were abandoned in 2017, after an investment of US$9 billion. The two AP-1000 units in Georgia were to start in 2016/2017 for a price of US$14 billion. One unit started in April, 2023, the second unit promises to start later in 2023. The total cost is now over US$30 billion.’ Big reactors do look increasingly hard to fund and build on time and budget, while it is argued that smaller ones could be mass produced in factories at lower unit costs and finished units installed on site more rapidly. However, that would mean foregoing conventional economies

100% renewable UK-- yes we can!

The ‘100% renewable UK’ campaign conference in London this weekend went off well , focussing on the UK 100% renewables by 2050 scenario produced for the campaign by LUT University in Finland. It was prefigured by a very clear on-line overview from Green MP Caroline Lucas of the UK’s dire energy policy context, with the LUT report seen as just what was needed as a corrective. So that set up Prof. Christian Breyer from LUT to outline the approach in detail online, with his main message being that ‘100% can be done’- and at less cost than any other approach.  As I noted in an earlier post, in his team’s scenario, wind takes the lead, with offshore at 44% of the total, onshore at 16%.  Solar PV is at 25%, although it could be much larger if land-use constraints were relaxed.  Wave energy is also plays a small part, but surprisingly not tidal power. A special feature is the conversion of surplus green power into hydrogen, with that being converted to methane for storage, helping to balanc